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Abstract: The present study is the first appraisal of regional hydrogeochemical programme for environmental assessment of 

the mineralized Lom Basin in East Cameroon. Fifty-two streamwater samples were collected and analysed for major cations 

(Ca
2+

, Mg
2+

, Na
+
, K

+ 
) and major anions (HCO3

–
, F

–
, Cl

–
, NO2

–
, NO3

–
, Br

–
, PO4

3–
, SO4

2– 
). Calcium and HCO3

–
 were the 

dominant ions. The chemical facies for the surface water were CaHCO3
 
and NaHCO3 types indicating a fresh water source. 

Major ion geochemistry demonstrated the potential to discriminate between natural and anthropogenic origins. Calcium ion, 

Mg
2+

, Na
+
, K

+
and HCO3

–
 had similar distribution trends reflecting weathering from the parent rocks. Sulphate distribution 

correlated with the occurrence of sulphide minerals associated with hydrothermal gold mineralization in the area while the 

distribution patterns of NO3
– 

and Cl
–
 reflected pollution from domestic activities within the municipality. Overall, the 

chemistry of stream water in the Lom Basin is mainly controlled by silicate weathering with only minor anthropogenic 

influence. This study forms an analogue for hydrogeochemical mapping in other mineralized terrains in Cameroon. 

Keywords: Hydrogeochemical Survey, Major Ions, Provenance, Lom Basin, Cameroon 

 

1. Introduction 

Geochemical mapping is crucial in identifying sources of 

elements for both mineral exploration and environmental 

monitoring [1–2]. Hydrogeochemical mapping, an integral 

part of most regional and local mapping surveys [3–4], is 

particularly useful in mapping a drainage basin that includes 

a proposed mine site [5]. The Lom Basin in East Cameroon is 

heavily mineralized especially in gold owing to its regional 

geological setting. Also, it has a long artisanal and semi-

mechanized mining history and is currently a target for 

industrialized mining. Consequently, research reporting the 

rock type, age, and the formation history or the 

reconnaissance gold investigations in this region are 

numerous [6–9]. Despite this extensive coverage, there is no 

available data on the chemical composition of streamwater 

required to establish quality criteria for water in the area. 

Surface water assessment is of considerable importance 

especially in areas where indiscriminate disposal of domestic 

wastes and informal artisanal mining are practised. Water 

quality also plays a vital role in promoting the standard of 

human health. 

Water is the principal transport pathway for elements 

derived from the chemical weathering of mineralized rocks 

and dissolved ion contents in natural waters are routinely 
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used to evaluate the surface water quality [10]. Thus, the 

chemical composition of streams draining a basin is 

fundamental for preparing regional geochemical baseline 

maps. Here, baseline refers to the elemental concentration 

levels in a medium at a particular period [11–12]. These 

background levels in surface water can be of natural or 

anthropogenic origin and distinguishing their sources can be 

quite challenging. Multivariate statistical procedures have 

often been used to discriminate between patterns of natural 

and anthropogenic origin [12]. Hence, it is imperative to take 

into account the origin of the occurrence and concentrations 

of the dissolved elements for environmental legislation and 

regulation [13]. 

This study presents a regional hydrogeochemical baseline 

prior to industrial mining in the Lom Basin. Other goals are 

(a) to distinguish between natural and anthropogenic sources 

of dissolved ions through a systematic sampling of 

streamwater draining the catchment, (b) to produce 

geochemical maps of dissolved ions in the area. These data 

provide information necessary for setting guidelines and 

legal standards in the region. Moreover, this study forms a 

reference for hydrogeochemical mapping in other 

mineralized areas in Cameroon. 

2. Study Area 

The Lom Basin consists largely of monotonous, gently 

undulating hills of altitude between 600 and 1100 m. Such 

topography has resulted in a well-developed dendritic 

drainage system. Streams within the study area rise from the 

hills, flow in a general south-west direction and discharge 

into the Lom River (Figure 1) which eventually empties into 

the Atlantic Ocean. The area has a hot and humid equatorial 

climate characterised by a long dry season from December to 

April, light wet season from May to June, short dry season 

between July and October and a heavy rainy season from 

October to November. The average annual rainfall varies 

from 1500–2000 mm. High temperatures are recorded 

between January and February, and the mean temperature is 

around 24.7°C. Shrubs and herbaceous savanna are the 

dominant vegetation cover which gives way to an evergreen 

forest further down south. 

 

Figure 1. Map of study area showing the location, geology, gold mineralization and sampling points. 
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Geologically, the study area is a post-collisional basin, 

comprising mainly volcaniclastic schists, metasedimentary 

rocks and the S-type granitoids [14, 8, 7]. The S-type granitic 

plutons intrude the low-grade metamorphic schists units 

interpolated with quartzites and metaconglomerates (Figure 

1). Uranium-Pb dating on zircons of the rocks yielded 

constrained ages of 612-600 Ma implying that sedimentation 

in the Lom basin occurred after 612 Ma followed by a rapid 

deformation and low-pressure metamorphism [15–16]. 

Structures in the Lom Group include trending NE-SW, NNE-

SSW and ENE-WSW faults associated with the Central 

Cameroon Shear Zone (CCSZ) [8, 7]. The evolution of this 

pull-apart basin is characterized by the reworking and 

remobilization of an Archean to Paleoproterozoic basement 

[16] accounting for its economic potential, especially gold. 

Gold mineralization in the study area is associated with 

quartz veins and veinlets, weathering profiles and wall rock 

alterations. Accordingly, small-scale gold mining has been 

practiced for over six decades and is on-going [17]. The 

regional hydrogeochemical baseline defined in this study 

covers an area of 30000 km
2 

including the Betare-Oya and 

Garoua-Boulai gold districts. 

3. Materials and Methods 

3.1. Sampling Methodology and Sample/Data Treatment 

Systematic sampling of streamwater was carried out at the 

peak of the dry season in February 2016, covering the 

southeastern portion of the Lom Basin (Figure 1). During this 

survey, abandoned and active mine sites were avoided. Field 

observations such as potential sources of contamination, land 

use and upstream lithology were documented. 

Representative fifty-two streamwater samples were 

collected from lower order streams (1
st
-3

rd
) during low flow 

conditions following the procedure outlined in the FOREGS 

(Forum of European Geological Surveys) Geochemical field 

mapping manual [18]. A sampling density of 1 sample per 5-

10 km was used. The position of each sampling site was 

marked using a Garmin etrex Global Positioning System. A 

transparent plastic bucket was filled with streamwater, and 

the pH, electrical conductivity (EC), total dissolved solids 

(TDS) and temperature were measured in the field using 

initially calibrated HI 9811-5 Portable pH/EC/TDS/T meter. 

The electrodes were rinsed before each measurement with the 

same water that was sampled and after with distilled water. 

The meter was calibrated for pH after every 10 

measurements using standard solutions from the 

manufacturer. At the end of each day, alkalinity was 

measured in the field using the HACH Digital Titrator model 

16900. Two separate sample sets were collected at each site; 

one was filtered through 0.45 µm Millipore membrane filters 

using 50 ml syringes and stored in previously washed new, 

narrow-mouth, transparent 50 ml polyethylene bottles. On 

the same day, 1 ml of 20% wt. pure concentrated HNO3 was 

added to the samples. These were used to determine major 

cations. A second sample set was collected but not acidified 

and was utilized for the analysis of major anions.  

3.2. Laboratory Analyses 

All chemical analyses were performed at the Laboratory of 

Volcanology and Geochemistry in Tokai University, Japan. 

The water samples were analysed for major cations (Ca
2+

, 

Mg
2+

, Na
+
, K

+
) by Flame Atomic Absorption Spectrometer 

(AAS) and major anions (F
–
, Cl

–
, NO2

–
, NO3

–
, Br

–
, PO4

3–
, 

SO4
2–

) by Ion Chromatography (ICS-900). Two replicates 

were run per sample. Overall, an ionic balance error of ± 5% 

was considered in further analysis and discussion. 

The spatial distribution maps for major ions were compiled 

using the Inverse Distance Weighting (IDW) technique in 

ArcGIS10.2 which is based mainly on the distance between 

the sampling points (5 to 10 km). Other information such as 

geology and land use were used in interpreting element 

distributions within the basin. 

4. Results and Discussions 

4.1. Geochemical Data 

Summary statistics for the streamwater data showing 

physico-chemical parameter measurements and major ion 

concentrations are presented in table (1). Most streams of the 

Lom Basin were predominantly neutral to mildly acidic in 

nature with pH values between 5.0 and 7.3. Electrical 

conductivity varied from 9 to 112 µS cm
-1 

and TDS ranged 

from 4 to 87 mg/L, with an average value of 27.98 mg/L. In 

agreement with [19] classification, all stream water samples 

in the study area were categorized as fresh (TDS < 1000 mg 

/L). 

4.1.1. Major Ion Geochemistry 

Calcium
 
and Na

+ 
were the dominant cations followed by K

+ 

and Mg
2+

. The concentration of Ca
2+ 

varied from 0.2 to 9.48 

mg/L and accounted for 32% of the total cations. 

Concentrations of Na
+
 were higher than those of Ca

2+ 
in 40% 

of the analysed water samples. In addition, Na
+
 and K

+
 

contributed 52% of the total cations. Like Ca
2+ 

and Na
+
,
 

HCO3
–

 was the dominant anion with a secondary contribution 

from NO3
–
. The order of abundance was HCO3

–
 >> NO3

–
 > 

Cl
–
 >SO4

2–
 > F

–
 >NO2

–
 > Br

–
 > PO4

2–
. Bicarbonate levels 

were between 2.73 and 62.66 mg/L with an average value of 

19.41 mg/L and accounted for 95% of the total anions. 

Excess HCO3
–
 can be ascribed to the weathering of alumino-

silicate minerals [21–22] or the formation of carbonic acid 

when CO2 resulting from the decay of organic matter 

combines with rainwater. The levels of NO3
–
 in the samples 

were generally low (< 2 mg/L) and constituted 3% of the 

total anions. The only exception was sample GB-17 (NO3
–
 = 

20.01mg/L) collected from a stream flowing close to an 

established refugee camp in Gado Badzere. Common sources 

of dissolved NO3
–
 in water include atmospheric precipitation, 

domestic sewage, agriculture fertilizers, human and animal 
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excrement [23]. The unexpected high NO3
–
 observed 

suggested the contribution of nitrate by oxidation of human 

and animal nitrogeneous waste given that open air defecation 

and cattle farming in this area are practiced on a fairly large 

scale. Sulphate concentrations (0.01–0.57 mg/L) were lower 

than concentrations in natural water (2-80 mg/L) [24] and 

reflect the low dissolution sulphide minerals in the near 

neutral waters. Besides, a negative correlation was observed 

between SO4
2–

 and pH (table 2) suggesting that the mild 

acidity recorded in the streams could not have originated 

through sulphide oxidation but perhaps by pyrite oxidation. 

Also, it is possible that the acid generated during this process 

might have been consumed through reactions with silicate 

minerals thereby providing a long-term buffering capacity 

[25]. 

Table 1. Descriptive statistics of physico-chemical parameters of stream water in the study area. Dissolved ion levels are compared to WHO proposed levels. 

Parameters Units Minimum Maximum Average Standard deviation WHO (2011) 

Temp °C 17.30 29.00 22.08 2.23  

pH 
 

5.00 7.30 6.26 0.47 6.50-8.50 

EC µS/cm 9.00 112.00 36.42 30.31  

TDS mg/L 4.00 87.00 27.98 23.45 500.00 

Na+ mg/L 0.06 8.96 2.34 2.13 50.00 

K+ mg/L 0.40 3.71 1.54 0.80 100.00 

Ca2+ mg/L 0.20 9.48 2.40 2.37 75.00 

Mg2+ mg/L 0.01 4.74 1.23 1.37 30.00 

HCO3
– mg/L 2.73 62.66 19.41 17.29 200.00 

NO3
– mg/L 0.01 20.01 0.75 3.23 50.00 

Cl– mg/L 0.07 1.28 0.23 0.21 250.00 

SO4
2– mg/L 0.01 0.57 0.13 0.15 200.00 

F–  mg/L 0.01 0.21 0.07 0.05 1.00 

NO2
– mg/L 0.00 0.13 0.04 0.03  

Br– mg/L 0.02 0.10 0.04 0.02  

PO4
2– mg/L 0.00 0.23 0.06 0.05  

Na+/Cl–  0.81 111.58 23.20 26.89  

 

4.1.2. Hydrogeochemical Facies of Streams 

The chemical patterns of the streamwater were elucidated 

by plotting the major ions on a Piper [26] trilinear diagram 

(Figure 2). This produced two distinctive water types: 77% of 

samples plotted as CaHCO3 and 23% as NaHCO3. These 

water species are typical of surface water draining 

igneous/metamorphic rocks in hot and humid equatorial 

climate, resulting in the discordant dissolution of primary 

silicate minerals such as Na-feldspars, plagioclases, pyroxene 

and hornblende [27–28]. Also, the water facies indicate short 

residence time thus low water-rock interaction [29], ion 

exchange and active recharge by groundwater associated with 

low EC [30]. 

 

Figure 2. Piper trilinear diagram depicting the chemical species of streamwater in the study area. Streamwater is classified as Ca-HCO3 and Na-HCO3 water 

types. 
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4.2. Geochemical Processes Controlling Surface Water 

Chemistry 

Weathering of silicate and carbonate minerals is a primary 

source of alkalinity in natural water. Also, the stoichiometric 

relationships between dissolved species have been used to 

unravel the origin of solutes and the processes that influenced 

the observed water chemistry. To investigate the role of 

mineral weathering, [31] suggested the plot of total cations 

against alkalinity. Based on this method, a 1:1 relation 

between the sum of cations and alkalinity is an indication that 

mineral weathering is the primary process controlling the 

water chemistry. 

In this study, all samples plot on or near the 1:1 dissolution 

line in Figure 3a indicating that silicate weathering is the 

main hydrogeochemical process affecting the surface water 

chemistry. These common rock-forming minerals are altered 

by the mildly acidic streamwater through hydrolysis to form 

metal cations in solution. 

The role of other geochemical processes was 

investigated using NO3
-
 vs HCO3

-
 plot (Figure 3b). An 

insignificant negative correlation rules out the possibility 

of nitrate generating processes given that nitrification or 

oxidation of organic matter will produce an equivalent of 

NO3
–
 by consuming the same equivalent of alkalinity [31]. 

Moreover, [32] proposed that the plot of Ca
2+

+Mg
2+

 

against HCO3
–
+SO4

2–
 will be close to the 1:1 line when 

carbonate dissolution is the dominant reaction in the 

system. However, in this study, all water samples plot 

below the theoretical equiline with a pronounced deviation 

at higher concentrations (Figure 3c). Higher HCO3
–
+SO4

2–
 

content compared to Ca
2+

+Mg
2+

 indicated a significant 

contribution from non-carbonate sources. Also, the 

deficiency in the sum of alkaline earth metals relative to 

bicarbonate requires that the excess negative charge of the 

anions be balanced by Na
+
+K

+ 
supplied through the 

weathering of Na-K silicates [33]. 

 

Figure 3. Mechanisms governing streamwater chemistry. (a) Relation between total cations and alkalinity showing silicate weathering (b) Variation in NO3
- 

concentrations as a function of alkalinity (c) Relation between Ca2++Mg2+ and HCO3
–+SO4

2– showing non-carbonate dissolution (d) Na vs. Cl cross plot. 

Sodium is derived from cation exchange. 
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The relationship between Na and Cl is frequently used to 

determine the source of salinity in natural waters. Besides, 

the stoichiometry of halite dissolution demands equal 

concentrations of Na
+
 and Cl

– 
in solution and a corresponding 

molar ratio of approximately one [33]. The molar ratio of 

Na
+
/Cl

–
 in the water samples compared to seawater (0.86) 

varied from 0.81 to 111.58 (average 23.2) with 98% of the 

samples showing Na enrichment. Higher Na
+
/Cl

-
 ratios (>1) 

reflect contributions from non-halite sources. From the 1:1 

plot of Na
+
 against Cl

– 
(Figure 3d), an increase in Na

+
 

without a corresponding increase in Cl
– 

was observed. This 

can be attributed to the possible exchange of Ca
2+

 for Na
+ 

at 

clay surfaces or organic components of the soil resulting in 

the Na-HCO3 water type. Organic matter and clay minerals 

have negatively charged ions which can adsorb and hold 

positively charged base cations by electrostatic force. 

Furthermore, Pearson’s correlation matrix (table 2) was 

computed to determine the inter-element relationship. From 

the resultant matrix, pH revealed a negative correlation with 

most of the variables. The electrical conductivity showed a 

high correlation (r = 0.923) with TDS indicating its direct 

relationship to the amount of dissolved salts in water. 

Similarly, high positive r values were observed between 

HCO3
–
 and the major cations. Chloride showed relatively 

high (0.84) and moderate (0.402) correlations with NO3
–
 and 

SO4
2–

, respectively. The underlying geochemical processes 

controlling the composition of stream water in the Lom Basin 

were investigated following principal component analysis 

(PCA) computation (table 3). Varimax rotation was adopted. 

In PCA, eigenvalues are commonly used to identify the 

number of components (PCs) that can be retained for later 

study [34]. Only PCs with eigenvalues greater than unity 

were extracted for further analysis. Thus, three PCs were 

considered which accounted for 83.7% of the total variance 

of information of the dataset. Principal component 1 (PC1) 

comprised TDS-EC-HCO3
–
-Mg

2+
-Ca

2+
-Na

+
-K

+
-pH and 

explained 59.7% of the total variance. The strong positive 

loading (>0.9) observed in this component suggested a 

common source, essentially the weathering of silicate 

minerals, and to some extent cation exchange. Carbonic acid 

facilitates the breakdown of silicate minerals. This reaction is 

accompanied by the release of base cations, silic acid and 

increased alkalinity [35] as observed in the study area. 

Potassium showed a moderate loading (0.652) suggesting K
+
 

was removed from solution by clays in the formation of 

secondary minerals.  

PC2 constituted Cl
–
 and NO3

–
 which explained 14.2% of 

the total variance. A negative contribution from the other 

variables was also observed. The combination of these anions 

indicated their anthropogenic input through human-related 

activities such as sewage sludge and cattle rearing in the 

surrounding communities [29]. The third component 

composed of SO4
2–

 and accounted for 9.8% of the total 

variance. This single variable correlated with the presence of 

sulphide bearing minerals and gold deposits. Gold occurs as 

quartz veins associated with vug-filling early pyritization in 

the Lom Basin [9]. 

Table 2. Pearson’s correlation matrix of measured water quality parameters. 

 pH EC TDS Cl- SO4
2- NO3

- HCO3
- Na+ K+ Ca2+ Mg2+ 

pH 1           

EC 0.395** 1          

TDS 0.381** 0.923** 1         

Cl- -0.007 0.234 0.264 1        

SO4
2- -.0004 -0.109 -.137 0.402** 1       

NO3
- -0.081 0.162 0.219 0.840** 0.491** 1      

HCO3
- 0.004 0.028 0.002 0.170 0.986** 0.107 1     

Na+ -0.022 -0.078 -0.107 0.401 0.999** 0.356* 0.990** 1    

K+ -0.092 -0.040 -0.106 0.177 0.934** 0.150 0.965** 0.948** 1   

Ca2+ 0.357** 0.965** 0.961** 0.198 0.167 0.177 0.967** 0.866** 0.729** 1  

Mg2+ 0.313* 0.978** 0.970** 0.219 0.157 0.139 0.978** 0.908** 0.705** 0.938** 1 

**correlation is significant at the 0.01 level (2-tailed). 
* correlation is significant at the 0.05 level (2-tailed). 

4.3. Regional Spatial Distribution and Sources of Enriched 

Geochemistry 

The regional geochemical maps for dissolved ions are 

presented in figures 4 to 12. Concentrations of Cl
–
 and NO3

–
 

(Figures 4 and 5) corresponded to high levels of H
+
 or low 

pH (Figure 6) in the northeastern portion of the study area 

which involves  localities close to the volatile border between 

Cameroon and the Central African Republic. These localities 

host more than two hundred thousand refugees. Hence, the 

domestic waste water produced from these municipalities, 

stock-raising and open air defecation contributed to NO3
–

 and 

Cl
–
 concentrations and account for the mild acidity recorded 

in water. Bicarbonate, Ca
2+

, Na
+
, K

+
, and Mg

2+
 showed 

similar distribution trends (Figures 7-11) basically indicating 

the underlying geology of the catchment area. These cations 

form the common silicate minerals alongside silicon and 

oxygen. Also, the incongruent dissolution of silicate minerals 

that react with dissolved CO2 gas derived directly from the 

atmosphere, decay of organic matter in the soil or 

photosynthesis results in the release of major cations, 

bicarbonate and dissolved silica [36]. 
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Table 3. Varimax rotated component matrix analysis of streamwater parameters. 

Variable Component 1 Component 2 Component 3 Communalities 

TDS 0.997 -0.002 0.022 0.552 

EC 0.995 0.033 0.001 0.992 

HCO3
- 0.994 -0.035 0.019 0.994 

Mg2+ 0.955 0.048 -0.037 0.837 

Ca2+ 0.954 -0.080 -0.015 0.634 

Na+ 0.944 0.124 -0.024 0.939 

K+ 0.652 -0.026 0.320 0.990 

Ph 0.609 -0.340 0.255 0.907 

Cl- 0.196 0.890 0.075 0.528 

NO3
- -0.142 0.780 -0.077 0.917 

SO4
2- -0.011 -0.010 0.969 

0.916 
Eigen values 6.541 1.543 1.121 

% Variance 59.466 14.202 9.803 

Cumulative% 59.466 73.896 83.687 

Comparable findings have been reported in some natural waters of Cameroon [21, 37–38, 27]. These authors attributed the 

solute composition of natural waters to the hydrolysis of the rock-forming minerals and the incongruent weathering reactions. 

Contrary to the major cations, the distribution of SO4
2–

 (Figure 12) correlated with the occurrence of sulphide minerals 

associated with Au mineralization in the area. Sulphidation of the wall rock has been proposed as a possible mechanism of 

hypogene gold precipitation within the Lom Group [9]. 

 

Figure 4. Streamwater regional geochemical baseline map of Cl– concentration in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 
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Figure 5. Streamwater regional geochemical baseline map of NO3
– concentration in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 
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Figure 6. Streamwater regional geochemical baseline map of H+ concentration in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 
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Figure 7. Streamwater regional geochemical baseline map of HCO3
–in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 
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Figure 8. Streamwater regional geochemical baseline map of Ca2+ in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 
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Figure 9. Streamwater regional geochemical baseline map of Na+ in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 
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Figure 10. Streamwater regional geochemical baseline map of K+ in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 
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Figure 11. Streamwater regional geochemical baseline map of Mg2+ in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 
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Figure 12. Streamwater regional geochemical baseline map of SO4
2– in southeastern Lom Basin. Dissolved ion concentrations are in mg/L. 

5. Conclusions  

This study assessed the hydrochemistry of streamwater in 

the Lom catchment. The streamwater is mildly acidic to 

neutral in nature. Calcium and Na
+
 were the dominant cations 

and HCO3
– 

was the most abundant anion. All the analysed 

parameters except pH were within the desirable limits 

(WHO) for drinking purposes. CaHCO3 and NaHCO3 were 

the main water types in the area signifying freshwater. In this 

research, the interrelationship among dissolved species have 

been used to determine the roles of different geochemical 

processes affecting the chemistry of streams draining the 

Lom Basin. Accordingly, the observed chemical composition 

of the streamwater was mostly influenced by the chemical 

weathering of the surrounding rocks. Cation exchange and 

anthropogenic activities were identified as minor 

geochemical controls.  

The provenance of elements was distinguished based on 

geology and land use. Bicarbonate, Na
+
, Ca

2+
, Mg

2+
 and K

+
 

showed similar distribution trends reflecting the geology. 

Sulphate distribution correlated with the occurrence of 

sulphides associated with vein gold deposits in the area. The 

distribution patterns of NO3
–

 and Cl
–
 were attributed to 

pollution from settlements. These dissolved ions were 

considered to influence the acidity locally. The quality of 

surface water is easily influenced by anthropogenic activities, 
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and stream sediment collects effectively trace metals 

resulting from such activities. Therefore, geochemical 

mapping incorporating surface water and stream sediment is 

of considerable value in future investigations within the Lom 

Basin. 
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