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Abstract 

Recently created long-term and regionally dispersed satellite-based rainfall estimates have emerged as crucial sources of rainfall 

data to assess rainfall's spatial and temporal variability, particularly for data-scarce locations. Objective (the general): The 

purpose of this paper is to assess the skills of nine selected satellite rainfall estimates i.e., (ARC 2.0, TRMM 3B42, CHIRPS v. 

2.0, TAMSAT 3.1, CMORPH v. 1.0 adj., PERSIANN CDR and DNRT, and MSWEP v. 2.2) and understand Spatio-temporal 

variability of rainfall over the Omo River basin using the best performing product. Method: The validation analysis was done by 

using a point-to-grid-based comparison test at different temporal accumulations. MSWEP was selected as the best product to 

analyze the long-term trend and variability of rainfall over the Omo-River basin from 1990-2017. The coefficients of variation 

(CV) and the standardization rainfall anomalies index (SRAI) were used to examine rainfall variability, while the Mann-Kendall 

(MK) and Sen slope estimators were used to examine the trend and magnitude of rainfall patterns. Results: The overall statistical, 

categorical, and volumetric validation index results show that the MSWEP is the best performing rainfall product followed by 

CHRIPS, 3B42, and TAMSAT according to their order of appearance than the remaining products (i.e., ARC, RFE, PER CDR, 

PER DNRT, and CMORPH). The CV result with the relatively highest monthly variability (CV > 30%) was observed in some 

southern, northern, southeastern, and central parts of the study area. In general, the overall annual CV shows almost no variation 

in the entire basin except in the lower part because of the region's prevalent topographic variances, which ranged from 3455 to 

352 m.a.s.l. In addition, the highest seasonal positive and negative anomalies are observed in each season in the entire basin. 

These abnormalities can result in significant floods and droughts that unquestionably influence the basin and its resources. 

Conclusion: In general, the basin has an increasing trend in the southern portions and a declining trend in the central to northern 

tip parts of the basin, as can be observed from the annual average MK trend tests. The basin has experienced a greeter variation 

but is not significant except in some parts of the basin. 
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1. Introduction 

In recent decades the availability of surface and ground-

water, as well as global and regional water cycles, are all 

impacted by climate change and fluctuation [1]. The negative 

effects of spatiotemporal variability of rainfall, which have a 

significant impact on water resources, have become a bottle-

neck for agricultural and livestock production [2]. According 

to [3], this condition has particularly most pronounced in 

Eastern African countries, due to its complex terrain, latitu-

dinal location, and the influence of regional and global at-

mospheric circulation. Ethiopia has a wide range of climates, 

rugged geography, and a lot of water resources [4]. Spatio-

temporal dynamics of the water resources are characterized by 

multi-weather systems rainfall of the country. 

Rainfall is the key driving force in hydrological studies, 

required to understand the complexity of the water cycle and 

to manage water resources [5]. The direction, intensity, and 

trends of rainfall across locations and seasons fluctuate 

throughout time, from days to day [6, 7]. Due to its significant 

influence on both socioeconomic and environmental problems, 

the variability and trend analysis of rainfall need necessary 

attention to be studied. These issues are more prevalent in 

inaccessible regions like Ethiopia's highlands and lowlands, 

where rainfall is extremely variable over short distances. 

Therefore, having access to reliable and accurate 

ground-based observed rainfall data in a particular planning 

unit or region provides significant advantages. However, in 

many parts of the world, particularly in the least developed 

countries, accurate and consistent observed rainfall data are 

limited mainly due to poor and uneven, and sparse distribution 

of rain gauge stations network across a given geographical 

area [8, 9]. Nowadays, technological advancements in remote 

sensing such as satellite-based rainfall estimates have become 

good alternatives and better options to bridge the gap and un 

input data sources for many hydro meteorological analyses, 

especially for data-sparse regions [9, 10]. For this reason, 

there is a need to assess the skills of nine selected satellite 

rainfall estimates i.e., (ARC 2.0, TRMM 3B42, CHIRPS v. 2.0, 

TAMSAT 3.1, CMORPH v. 1.0 adj., PERSIANN CDR and 

DNRT, and MSWEP v. 2.2) and understand Spatio- temporal 

variability of rainfall over the Omo River basin using the best 

performing product. 

2. Description of the Study Area 

The Omo River (additionally known as Omo-Gibe or Bot-

tego river basin) is placed in Southwestern Ethiopia and its 

miles are the biggest river outdoors the Nile Basin. It lies in 

the 4°30′ to 9°00′ N range and 35° 00′ to 38°E longitude with a 

mean altitude of 2800 m a.m.s.l. The climate of the Omo River 

Basin varies from a hot arid climate in the south to a tropical 

humid in the highlands that include the extreme north and 

northwestern part of the basin [11]. Moreover, the seasonal 

rainfall distribution within the Omo Gibe River Basin arises 

out of the annual migration of the ITCZ. 

2.1. Data Collection and Analysis 

 
Figure 1. Geographical location of the study area data source from (SRTM DEM data is being housed on the USGS Earth Explore). 
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To comprehend the overall aspects of the problem under in-

vestigation, the study utilized primary data sources. These data 

sources are meteorological records of climate data (rainfall data) 

from the Ethiopian Meteorology Institute (EMI) and satellite 

rainfall estimation products (SREPs) which are freely available 

on the climate data analysis tool (CDT) and the web for the 

specified study site. Rainfall data was selected from 2000-2020 

for 42 ground stations and the presence of observed data was 

checked using CDT (climate data analysis tool) and the result 

shows that most of the station data available from 75% to 100%. 

This value indicates good historical data available for the se-

lected observed ground stations. 

2.2. Satellite Rainfall Data 

SRE products are increasingly available with almost global 

coverage and the supply of those products is becoming 

cost-effective sources for many applications [12]. Most of 

SREPs are combined products of reanalysis, rain gauge data, 

and remote sensing estimation, for this desired specific ob-

jective nine satellite rainfall estimation products are selected 

depending on their high spatial resolution, relatively long time 

series, and freely available. A summary of the satellite rainfall 

products is given below in Table 1. 

3. Methodology 

3.1. Validation SREP with Gauge Rainfall Data 

The spatial patterns of nine satellite products were evalu-

ated and compared with 42 rain gauge data from 2000-2020. 

All of the SRE products taken into consideration were statis-

tically evaluated to determine how well they could detect 

rainfall on a daily, decadal, monthly, seasonal, and annual 

basis. The comparison between gridded satellite rainfall es-

timates and ground rainfall observations can be made using 

either grid- to-grid or point-to-grid comparison methods.  

Table 1. Satellite rainfall estimation products used in this study and their spatial and temporal Characteristics. 

SRE prod-

ucts 

Product Com-

pany 
 Period available 

Spatial resolu-

tion (0) 

Temporal 

resolution 
Data links 

CHIRPS v2.0 

USGS & 

Climate Hazard 

Group 

1981---- present 0.05*0.05 daily 

CHIRPS: Rainfall Estimates from Rain 

Gauge and Satellite Observations | Climate 

Hazards Center - UC Santa Barbara 

(ucsb.edu) 

TAMSAT 3.1 
Reading Uni-

versity 
1983 ---- present 0.0375*0.0375 daily 

TAMSAT - Tropical Applications of Meteor-

ology using SATellite and ground-based data 

(reading.ac.uk) 

RFEv2.0 NOAA_CPC 2001 ---- present 0.1* 0.1 daily 
Index of /fews/fewsdata/africa/rfe2/shp (no-

aa.gov) 

CMORPH adj NOAA_CPC 1998 ---- present 0.25*0.25 daily 

Index of 

/precip/CMORPH_V1.0/CRT/8km-30min 

(noaa.gov) 

PERSIANN 

CDR 

CHM & RS _ 

UCI 
1997 ---- present 0.25*0.25 daily 

Index of /CHRSdata/PERSIANN-CDR/daily 

(uci.edu) 

3B42 NASA & JAXA 1998 ----- present 0.25*0.25 daily 
https://disc.gsfc.nasa.gov/datasets/TRMM_3

B42_Daily_7/summary 

PERSIANN 

DNRT 

CHM & RS _ 

UCI 
2001 ---- present 0.04*0.04 daily CHRS Data Portal (uci.edu) 

ARC NOAA_CPC 1983 ---- present 0.1*0.1 daily 
cpc.ncep.noaa.gov/products/fews/AFR_CLI

M/afr_clim_body.html.20130625 

MSWEP V2.2 
Hylke Beck 

(Princeton UV)  
1979 ---2017 0.1*0.1 daily http://www.gloh2o.org/mswep/ 

 

The first method requires interpolation of the gauge data 

with the grid data, where the grid gauge data is compared with 

the grid data of global precipitation estimates; however, con-

verting points to meshed interpolated data causes errors due to 
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uneven geospatial distribution interpolation [12-14] Thus, this 

study has used point-to-grid comparison approaches. 

3.1.1. Statistical Evaluation Method 

Correlation coefficient (r): - Indicate the relationship be-

tween observed rainfall data and the SREPs products. Where 

Gr is ground observed rainfall data and Sr is satellite rainfall 

estimation. The range of values of r is from +1 to −1, in which 

the value of 0 indicates that there is no linear relationship 

between the satellite-derived rainfall estimation and in-situ 

observations, the value 1 indicates perfect positive linear 

correlation and the value −1 implies a perfect negative linear 

correlation. 

r =
∑(Gr−Grmean)(Sr−Srmean)

√∑(Gr−Grmean)2√∑(Gr−Grmean)2
             (1) 

Coefficient of determination (R
2
): - describes the proportion 

of the variance in observation data by the satellite estimation. 

It is the magnitude linear relationship between the observed 

and the satellite values. R 
2
 ranges from 0 which indicates poor 

model performance to 1 which indicates best model perfor-

mance and typical values greater than 0.6 are considered ac-

ceptable model performance. 

R2 = (
∑(Gr−Grmean)(Sr−Srmean)

√∑(Gr−Grmean)2√∑(Gr−Grmean)2
)2           (2) 

Mean Error (ME) and Mean Absolute Error (MAE): - Mean 

bias error (ME) (ranges from − ∞ to ∞) and mean absolute 

error (MAE) (ranges from 0 to ∞) measures the average 

magnitude of estimation error and the perfect score for these 

statistics is zero. Positive and negative ME value indicates an 

overestimation and underestimation of SRE data products, 

respectively [15]. 

ME = 1/n ∑ (Sr −Gr)            (3) 

MAE =
1

𝑛
∑ Gri −  Sri𝑛
𝑖=1              (4) 

Root Mean Square Error (RMSE): - is a measure of the 

differences between satellite observation and the actual values 

measured by rain gauge (measure the average error magnitude) 

or it is one of the error indices and use to measure of the dif-

ference between observed and SREPs values. The value of 0 

represents the perfect fit.  

RMSE = √∑
(Gr−Sr)2

𝑛

𝑛
𝑖=1

                (5) 

Bias is a measure of how the average satellite rainfall 

magnitude compares to the ground rainfall observation.  

A value of 1 is the perfect score. A bias value above (below) 

1 indicates an aggregate satellite overestimation (underesti-

mation) of the ground precipitation amounts. 

Bias = ∑ Sr/ ∑ G……                (6) 

Nash–Sutcliffe efficiency coefficient: - It determines the 

relative magnitude of variance of residues and measured data. 

NSE values range between −∞ and 1, with value 1 indicating a 

perfect fit between the satellite-based and observed rainfall. 

NSE =
(∑ (Sri − Gri)𝑛
𝑖=1 )2

(∑ (Gri − Sri)𝑛
𝑖=1 )2

                  (7) 

Percent Bias (PBIAS): It is calculated between the observed 

and SREPs and it indicates the systematic error (larger or 

smaller than observed) in rainfall amount (Measure the aver-

age tendency of the SREPs). Range value between (Positive 

values of PBIAS indicate an overestimation of the rainfall 

quantity, whereas negative values show an underestimation of 

the rainfall quantity. 

PBIAS =
∑ (Sri − Gri)n
i=1 ∗ 1

∑ Srn
i=1 ∗ 100

                (8) 

3.1.2. Categorical Performance Indices 

To evaluate the performance of satellite rainfall products, 

four categorical statistical indices were used, the probability 

of detection (POD), false alarm ratio (FAR), Heidke skill score 

(HSS) and Critical successes index (CSI) [16]. POD measures 

the rain events that were correctly detected by the satellite; 

FAR measures the rain events that were incorrectly detected; 

HSS were used to assess the accuracy of SREPs in identifying 

rainfall days (i.e., days with ≥ 1mm) and CSI describing the 

overall skill of the satellite products relative to gauge obser-

vation. The ideal values of POD, FAR, and CSI range from 0 

to 1, with 1 being a perfect measure for POD and CSI while 0 

for FAR and (-∞-1) for HSS. 

POD =
𝐻

𝐻+𝑀
                    (9) 

FAR =
𝐹

𝐹+𝑀
                   (10) 

CSI =
𝐻

𝐻+𝑀+𝐹
                     (11) 

𝐻𝑆𝑆 =
2(𝐻∗𝐶𝐷−𝐹∗𝑀)

(𝐻+𝑀)(𝑀+𝐶𝐷)+(𝐻+𝐹)(𝐹+𝐶𝐷)
….       (12) 

Every grid cell is classified as a hit (H) when a rainfall 

recorded by both satellite and rain gauge; miss (M) when rain 

observed by only the rain gauge; and false alarm (F) when rain 

is documented only by satellite. To define whether there is rain 

or no rain pixels, a threshold value 1.0 mm/day was adopted 

[16]. The categorical statistical indices are given below: - 

where CD stands for corrected negative that could occur by 

chance. Note that when a threshold is set, a wet day occurs 

when an amount greater than the set threshold was recorded. 

The ability of SREs to detect rainy days, defined here as days 

with a rainfall total of more than 1 mm, was assessed based on 

http://www.sciencepg.com/journal/hyd


Hydrology http://www.sciencepg.com/journal/hyd 

 

40 

the contingency Table 2 using dichotomous metric. 

Table 2. The 2 × 2 contingency table for comparing the rainy days in 

gauge and satellite estimate. A day is considered rainy if 1 mm of 

rainfall or more is recorded. 

 Gauge ≥ 1 mm Gauge < 1 mm 

Satellite ≥ 1 mm Hit (H) False alarm (F) 

Satellite < 1 mm Miss (M) CD 

3.1.3. Volumetric Validation Indices 

Is an extension of the categorical table, it includes (i) the 

volumetric hit index (VHI), (ii) the volumetric false alarm 

ratio (VFAR), and (ii) the volumetric critical success index 

(VCSI) that were proposed by [17] have been adopted to 

evaluate the volumetric performance of the selected satellite 

rainfall products. 

VHI =
∑ (Sri(Sri>t & Gri>t))𝑛
𝑖=1

∑ (Sri\(Sri>t & Gri>t))𝑛
𝑖=1 +∑ (Gri ≤t & Gri>t)𝑛

𝑖=1

  (13) 

Where VHI is the volume of correctly detected rainfall by 

the satellites relative to the volume of the correctly detected 

satellites and missed gauge observations. 

VFAR =
∑ (Sri\(Sri>t & Gri>t))𝑛
𝑖=1

∑ (Sri\(Sri>t & Gri>t))𝑛
𝑖=1 +∑ (

Sri

Sri>t &Gri≤t
)𝑛

𝑖=1

     (14) 

Where VFAR is the volume of false rainfall by the satellites 

relative to the sum of rainfall by the satellite 

VCI
∑ (Sri\(Sri>t & Gri>t))𝑛
𝑖=1

∑ (Sri\(Sri>t & Gri>t))𝑛
𝑖=1 +∑ (Sri\(Sri≤t & Gri>t))𝑛

𝑖=1 +∑ (Sri\(Sri>t & Gri≤t))𝑛
𝑖=1

                    (15) 

Where VCSI is the overall measure of volumetric perfor-

mance. Here S is satellite rainfall estimates, G is gauge ob-

servations, i =1 to n and n is the sample size, and t is the 

threshold values (t = 1 mm in this study). 

3.1.4. Quantile Validation Indices 

It is used to detect the volumetric skills of the precipitation 

products for different extreme precipitation thresholds i.e., 

50%, 80%, and 90% quantiles of reference data [17]. But for 

this study chosen from the above quantiles select 80% pre-

cipitation thresholds for volumetric evaluation metrics. 

Quantile probability of detection (QPOD): _is defined as 

the probability of detection (POD; see [18, 17] above a certain 

threshold. 

𝑄𝑃𝑂𝐷 =
∑ 𝑰(

𝑺𝒓

𝑺𝒓
>𝒕 &𝑮𝒓≥𝒕)𝒏

𝒊=1

∑ 𝑰(
𝑺𝒓

𝑺𝒓
>𝒕 &𝑮𝒓>𝒕)+∑ 𝑰(

𝑮𝒓

𝑺𝒓
≥𝒕 &𝑮𝒓>𝒕)𝒏

𝒊=1
𝒏
𝒊=1

     (16) 

Were, I the indicator function. The QPOD represents the 

ratio of the number of correct identifications of precipitation 

above a given threshold to the total number of precipitation 

occurrences above the same threshold as indicated by the 

reference. And The QPOD ranges from 0 to 1, with 1 being the 

perfect QPOD. For all products, the probability of detection 

reduces as the threshold increases. 

Quantile False Alarm Ratio: _Quintile false extreme alarm 

ratio (QFAR) is defined as the false alarm ratio above a certain 

threshold: 

𝑄𝐹𝐴𝑅 =
∑ 𝑰(

𝑺𝒓

𝑺𝒓
>𝒕 & 𝑮𝒓 ≤𝒕)𝒏

𝒊=1

∑ 𝑰(
𝑺𝒓

𝑺𝒓
>𝒕𝑮𝒓>𝒕)+∑ 𝑰(

𝑺𝒓

𝑺𝒓
> 𝒕𝑮𝒓 ≤ 𝒕)𝒏

𝒊=1
𝒏
𝒊=1

      (17) 

The QFAR represents the ratio of the number of false iden-

tifications of precipitation above a given threshold to the total 

number of correct and false occurrences over the same 

threshold as indicated by the reference. The QFAR ranges 

from 0 to 1, with 0 being the perfect QFAR. 

Quantile critical success index (QCSI) given as 

𝑄𝐶𝑆𝐼 =
∑ 𝑰(

𝑺𝒓

𝑺𝒓
>𝒕&𝑮𝒓>𝒕)𝒏

𝒊=1

∑ 𝑰(
𝑺𝒓

𝑺𝒓
>𝒕&𝑮𝒓>𝒕)+∑ 𝑰(

𝑮𝒓

𝑺𝒓
≤ 𝒕&𝑮𝒓> 𝒕)+∑ 𝑰(

𝑺𝒓

𝑺𝒓
>𝒕 &𝑮𝒓≤𝒕)𝒏

𝒊=1
𝒏
𝒊=1

𝒏
𝒊=1

   (18) 

3.2. Spatio Temporal Rainfall Variability 

For this case investigate the spatiotemporal variability and 

trends of rainfall across ORB, the coefficient of variation (CV) 

method, the standardized rainfall anomaly (SRA), and trend 

analysis are the following computations were used to analyze 

the spatial and temporal variability of annual, seasonal, and 

monthly rainfall for the study site. The study area's spatial 

variability of rainfall was developed using the standard 

kriging interpolation approach in ArcGIS 10.8, seasonal, 

yearly, and monthly areal rainfall variations were created after 

the locations of the rain gauge stations for the basin were 

plotted. When compared to deterministic interpolation tech-

niques like the inverse distance weighted and spline methods, 

the conventional kriging approach is believed to perform 

better [19]. 

3.2.1. Coefficient of Variation 

Generated the coefficient of variation (CV), which was then 

utilized to study the spatiotemporal variability of annual, 

seasonal, and monthly rainfall for each pixel given by 
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CV =
σ

μ
∗  100                   (19) 

Where CV is the coefficient of variation; 𝜎 is the standard 

deviation and 𝜇 is the mean precipitation. The CV measures an 

area's overall rainfall record variability this variability is di-

vided into three categories: low (CV < 20), moderate (20 CV 

30), and high (CV >30) [20-22]. 

3.2.2. Standardized Rainfall Anomaly Index 

Standardized anomaly index (SARI) is used as a descriptor 

of rainfall variability and it indicates the number of standard 

deviations that a rainfall event deviates from the average of the 

considered years [23]. It was also used to determine the fre-

quency of dry and wet years in the record and used to assess 

the frequency and severity of droughts [10]. It indicates the 

departure from the long-term mean with negative values rep-

resenting periods of below-normal rains (droughts) while 

positive values reflect above-normal rains (food risk). 

Za =
Xi−Xi mean

σ
              (20) 

Where Za is the standard rainfall anomaly; Xi is an annual 

rainfall of a particular year; Xi is the mean annual rainfall, and 

𝜎 is the standard deviation over a period of observations (20 

years in our case). A pixel with a negative value of Za repre-

sents periods of below-normal rains (drought) while a positive 

value indicates above-normal rains (with the possible risk of 

food). 

SAI value is classified as extremely wet (SRAI >2), very 

wet (1.5≤ SRAI ≤1.99), moderately wet (1≤ SRAI≤1.49), near 

normal (−0.99 ≤ SRAI ≤ 0.99), moderately dry (−1.49 ≤ SRAI 

≤ −1), severely dry (−1.99 ≤ SRAI ≤ −1.5) and extremely dry 

(SRAI ≤ −2) [23, 24]. 

(i). MK Trend Analysis 

One of the often-employed techniques for identifying a 

climate trend in time series data is the MK trend test. The MK 

test's specifics are detailed in [25]. The MK test is designed to 

identify trends in annual and seasonal bases of climate pa-

rameters that are monotonically (growing or decreasing). 

Sen's estimator and the Mann-Kendall (MK) trend test were 

used to examine whether there had been a long-term change in 

both the rainfall and temperature indices. The MK test's ability 

to detect annual and seasonal trend changes is less impacted 

by climate outliers [7]. However, if there is an auto correlation 

in the time series data, the MK test result could contain some 

mistake. To solve this issue, a pre-whitening method was 

carried out with no modifications, and there was no detectable 

serial autocorrelation at all lags. Based on seasonal and annual 

rainfall data from 1990 to 2017 in the ORB, the MK test from 

the Z value and trend from Sen's slope estimation was derived 

after the serial autocorrelation test. The test based on S statis-

tics and each paired observed values Dj (j > k) of the random 

variable will be inspected to find out whether Dj > Dk or Dj < 

Dk. 

S = ∑ ∑ sgn(Dj −  Di)n
j=i+1

n−1
i=1          (21) 

where Dj and Di are the sequential data values and n is the 

length of the data set and Sgn 

Sgn(Dj −  Di) =

1𝑖𝑓 (𝐷𝑗 −  𝐷𝑖)  >  0
(0𝑖𝑓 (𝐷𝑗 −  𝐷𝑖)  =  0)

−1𝑖𝑓 (𝐷𝑗 −  𝐷𝑖)  <  0
        (22) 

If the dataset is identically and independently distributed, 

then the mean of S is zero and the variance of S is given by:  

Var(S) =
[n(n−1)(2n+5)−∑ ti(ti−1)(2ti+5)]m

i=0

18
        (23) 

Where, n is the length of the dataset, m is the number of tied 

groups (a tied group is a set of sample data having the same 

value) in the time series and t
i
 is the number of data points in 

the it
h
 tied group. According to Mann-Kendall, the null hy-

pothesis H0 states that a data series is serially independent and 

identically distributed with no monotonic trend. The alterna-

tive hypothesis H1 is that the data follows a monotonic trend. 

In a two-sided test for trend at a significance level of 𝛼, H0 

should be rejected and H1 is accepted if |Z| > z 𝛼 ∕2, where FN 

(z 𝛼 ∕2) is the standard normal cumulative distribution function, 

and Z is the test statistic used to identify the direction of the 

trend and its significance. The Z statistics are calculated using 

eq 24. 

𝒁 =

(

 
 

𝑺+1

√𝑽𝒂𝒓(𝑺)
 𝑓𝑜𝑟 𝑠 < 0

0         𝑓𝑜𝑟 𝑆 = 0
𝒔−1

√𝑽𝒂𝒓(𝑺)
𝑓𝑜𝑟  𝑆 > 0

)

 
 

           (24) 

The Z is the standard statistics test. The statistical signifi-

cance level of the trend variation was evaluated using the Z 

value. A positive MK statistic (Z > 1.96) depicts a significant 

increasing trend, whereas a negative (Z < -1.96) indicates a 

significantly decreasing trend, at the α = 0.05 level of signif-

icance [26]. 

(ii). Sen's Slope Estimator 

Sen's slope estimator was also used to calculate the rate of 

change of the trend to evaluate the relative strength of the MK 

trend test in time series data [26]. Sen's slope estimations are 

frequently employed to estimate the size of trends in hy-

dro-climate time series. In contrast to linear regression, it 

reduces the impact of missing values or outliers on the slope. 

Equation 20 uses the nonparametric Sen's estimator of the 

slope to calculate the magnitude of the monotonic trend in the 

hydrologic time series. 
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𝖰 = median (
Di−Di

j−i
)                 (25) 

Where, β represents the median value of the slope values 

between data measurements Di and Dj at the time steps i and j 

(i, j) respectively. The positive value of β indicates an in-

creasing trend whereas the negative value of β indicates a 

decreasing trend. The sign of β reflects the data trend direction, 

whereas its value indicates the steepness of the trend (Adisu et 

al., n.d.). 

For all I < j……… (j = 2..., n and i = 1, n−1  

𝑌𝑡 = 𝐷𝑡 − βt                (26) 

Where Yt is the detrended series, Dt is the original data se-

ries value at time t and β is the slope. 

4. Results and Discussion 

4.1. Daily Validation 

Satellite rainfall estimation data were compared to all gauge 

rainfall data daily. All SREPs performed poorly according to 

the majority of statistical indicator indices. The value of 

Pearson’s correlation coefficient at the daily time scale (CC) 

showed a poor relationship with all satellite rainfall estimation 

products. This condition was also proved by [11, 27], on all 

satellite rainfall estimation products. 

As can be seen in Table 2 a good relationship was per-

formed by TAMSAT at the value of CC (0.339) with a bitter 

coefficient of determination (R
2
 = 0.115). 

Table 3. A statistical summary of the daily comparison of SREPs with all observed ground rainfall data. 

Name ARC CHRIPS CMORPH MSWEP 
PE 

CDR 

PER 

DNRT 
RFE 

TAM-

SAT 
3B42 

Perfect. 

Score 

CORR 0.242 0.246 0.316 0.311 0.286 0.286 0.255 0.339 0.318 1 

R2 0.06 0.06 0.10 0.10 0.08 0.08 0.07 0.11 0.10 1 

BIAS 0.733 1.084 0.952 0.991 0.916 1.249 0.827 1.115 1.071 1 

PBIAS -26.7 8.391 -4.778 -0.862 -8.367 24.88 -17.283 11.482 7.132 0 

ME -1.0 0.322 -0.183 -0.033 -0.322 0.956 -0.664 0.441 0.279 0 

MAE 4.354 5.229 4.429 4.477 4.414 5.205 4.353 4.618 4.76 0 

RMSE 9.241 10.365 9.137 8.99 8.398 10.194 9.053 8.674 9.518 0 

NSE -0.32 -0.659 -0.275 -0.254 -0.086 -0.603 -0.264 -0.16 -0.38 1 

POD 0.468 0.448 0.69 0.712 0.772 0.84 0.692 0.705 0.7 1 

POFD 0.153 0.165 0.25 0.28 0.361 0.415 0.286 0.269 0.279 0 

FAR 0.378 0.407 0.404 0.423 0.464 0.478 0.433 0.414 0.418 0 

CSI 0.364 0.343 0.47 0.468 0.463 0.475 0.453 0.471 0.466 1 

HSS 0.334 0.299 0.425 0.41 0.373 0.372 0.387 0.416 0.403 1 

 

CC (0.318, 0.316, 0.311, 0.286, and 0.286) was obtained 

with a finer R
2
 (0.10, 0.09, 0.096, 0.08, and 0.081) by 3B42, 

CMORPH, MSWEP, PERSSION CDR, and DNRT, respec-

tively, with a small bet difference. According to [28]), the 

TAMAST product outperforms PERSSION, RFE, and 

CHRIPS over ORB at all-time scales, but only at the daily 

time scale, as seen in our study. The validation assessment 

between SREPs and gauge rainfall for each day was processed 

on a basin scale from 2000 to 2020. As shown in the scatter 

plot in Figure 2, all SREPs scored low in agreement with 

observed gauge data due to poor quality control, consistency, 

and scarcity, as well as their geographical location. This 

basin's geographical range ranges from 352 – 3458 m.a.s.l., as 

supported by [11, 28-30]. TAMSAT, PER CDR, DNRT, 3B42, 

CHRIPS, CMORPH1.0adj, and MSWEP in CDF, however, 

there is a strong linear correlation with estimation data across 

3B42, MSWEP, CMORPH, and PER DNRT from the re-

maining SREPs. 
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Figure 2. Daily comparison scatter plot and CDF between each SREPs and observed ground rainfall data over Omo River Basin from 2000 to 

2020. 

4.2. Dekadal Validation 

The daily precipitation and SREPs data were combined to 

create decadal rainfall data, which was then used to evaluate 

both on a decadal time scale. The overall performance of the 

SREPs at decadal time scales. CHIRPS 2.0 had a relatively 

higher correlation value (r = 0.687) with a perfect score POD 

(1.00), followed by MSWEP, TAMSAT, 3B42, CMORPH, 

PER CDR, PER DNRT, RFE, and ARC (r = 0.669, r = 0.662, 

r= 0.641, r = 0.649, r = 0.6, r = 0.605, r = 0.557). All SREPs 

have a good model performance coefficient of determination 

(R
2
 = 0.47, 0.447, 0.43, 0.41, and 0.27, respectively). 

CHRIPS 2.0 has a lower RMSE than the others, with a range 

of 32.283 – 40.587. ARC 2 and TAMSAT 3.1, as well as 

CMORPH v1.0 adj, scored relatively medium PODs with the 

lowest VHI and VCSI values among all SREPS. And all 

SREPs scored a higher FAR with relative CSI values above 

0.795, which analyze the overall skill of the satellite products 

relative to gauge observation. In contrast, the majority of 

SRE products were found to have a nearly good bias (bias of 

0.733). While sectored at a perfect bias of 0.99 and flowing 

by PER CDR, CMORP v1.0adj, RFE, and ARC with slightly 

underestimated observed rainfall, CHRIPS 2.2, TRMM 

3B42, TMASAT 3.1, and PER DNRT are overestimated by a 

small threshold based on the observed data. 

4.2.1. Monthly Validation 

The monthly correlation of satellite rainfall estimation 

products was evaluated with gauged rainfall data from 2000–

2020, as displayed in Table 4. The result shows CHRIPS had a 

better relationship with gauged rainfall data than the others 

and flowed from MSWEP 2.0, TMASAT 3.1, and 3B42. 

However, CMORPH1.0adj, PERDNRT, PERCDR, RFE, and 

ARC show a medium level of agreement with the station 

compared to others. Moreover, comparisons based on a perfect 

monthly average bias were scored by MSWEP with a slight 

underestimate from gauged data, which is similar to decadal 

outputs, and flowed by CHRIPS with a slight overestimate 

from ground station data. Besides, PER CDR, 

CMORPH1.0adj, RFE, and ARC show that ground station 

data is underestimated, while 3B42, TMASAT3.1, and PER 

DNRT are overestimated. In addition to this, the negative 

PBIAS scored MSWEP, CMORPH1.0adj, PER CDR, RFE, 

and ARC, which are underestimated, and the positive PBIAS 

scored CHRIPS, 3B42, TAMSAT, and PER DNRT, which 

overestimate rainfall quality. 

To verify satellite rainfall estimation products concerning 

detecting heavy rainfall rates at different temporal accumu-

lations, it should be noted that extremes can be defined based 

on different viewpoints. In this paper, "heavy extreme rain-

fall rate" is defined as rainfall rates above the 80% quantile; 

this condition is proven by [31]. As shown in Table 3, the 

ratio of correct detections above a certain threshold to total 

occurrences above the same threshold is denoted by the 

reference "QPOD." Except for ARC, CMORPH1.0adj, and 

PER CDR, all SREPs have a higher QPOD of 0.861 in this 

case. All SREPs scored the best QFRA above a certain 

threshold. Furthermore, those with a lower QCSI received 

ARC and RFE, while those with a higher QCSI received a 

perfect QCSI with relative value. To verify more, we need 

additional information to get a clearer understanding of the 

capability of satellite rainfall estimation products with gauge 

rainfall data. In this case, the scatter plot and CDF give a 

better description map for individual products. As can be 

seen in Figure 3, all SREPs have good aggregates with 

ground station data. However, ARC and RFE exhibit un-

derestimation for all accumulation periods over the study 

area. MSWEP2.0, CHRIPS, 3B42, TAMSAT, and PER CDR 

demonstrate a good relationship between station and esti-

mation data, with low under- and overestimation. But some 

satellite rainfall estimation products like PER and DNRT 
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exhibit high threshold overestimates from ground station 

data. 

4.2.2. Seasonal & Annual Validation 

SREPS must be validated further using gauge rainfall data 

from different accumulation time series. Overall, the seasonal 

Bega, Belg, and Kiremt validation results show that MSWEP 

performed well in detection and flow, as indicated by 3B42, 

CMORPH1.0adj, CHRIPS, and TAMSAT, respectively. 

As displayed in Figure 4, the annual compression between 

SREPs with surface station data over the Omo basin the results 

show that MSWEP outperforms all other SREPs in all metric 

indices. It has a better CC, a perfect bias, a negative percent of 

bias, a lower RMSE, and the best NSE. And followed by 

CHRIPS, 3B42, TAMSAT, PER CDR, CMORPH1.0adj, 

REF2.0, PER DNRT, and ARC, respectively. However, all 

SREPs have perfect POD, FAR, and CSI on an annual scale, 

and when it comes to volume detection, all products perform 

well and accurately when compared to gauged rainfall data. In 

general, MSWEP and CHRIPS are chosen from among all 

SREPs for their accurate performance and detection capability 

when compared to other products for studying spatiotemporal 

variability and trends in rainfall over the Omo River basin. 

 

Figure 3. Monthly validation scatters plot and CDF. 

Table 4. Monthly validation SREPs with gauged rainfall data over Omo River Basin from 2000-2020. 

Name ARC CHRIPS  CMORPH MSWEP 
PE 

CDR 

PER 

DNRT 
RFE TAMSAT  3B42 

Perfect. 

Score 

CORR 0.6 0.8 0.7 0.8 0.7 0.7 0.7 0.8 0.8 1 

R2 0.4 0.6 0.5 0.6 0.5 0.5 0.4 0.6 0.6 1 

BIAS 0.7 1.1 1.0 1.0 0.9 1.3 0.8 1.1 1.1 1 

PBIAS -27.1 8.7 -4.1 -1 -8 25.1 -17 11.7 7.2 0 

ME -32.1 10 -4.7 -1.1 -9.6 29.2 -19.9 13.6 8.5 0 

MAE 59.2 43.4 47.8 41.6 49.6 59 53.3 50 45.6 0 

RMSE 87.6 63.8 71.8 63.6 73.4 86.1 79.5 71.3 67.2 0 

NSE 0.3 0.6 0.5 0.6 0.5 0.3 0.4 0.5 0.6 1 

POD 0.9 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1 

POFD 0.3 0.9 0.4 0.6 0.9 0.8 0.7 0.4 0.7 0 
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Name ARC CHRIPS  CMORPH MSWEP 
PE 

CDR 

PER 

DNRT 
RFE TAMSAT  3B42 

Perfect. 

Score 

FAR 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0 

CSI 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1 

HSS 0.5 0.1 0.6 0.5 0.2 0.3 0.4 0.4 0.4 1 

VHI 0.7 1.0 0.9 0.9 0.9 1.0 0.8 1.0 1.0 1 

QPOD 0.7 0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.9 1 

VFAR 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0 

QFAR 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0 

VMI 0.3 0.0 0.1 0.1 0.1 0.0 0.2 0.0 0.0 0 

QMISS 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0 

VCSI 0.6 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 1 

QCSI 0.6 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.8 1 

Cat.thres.>= 1 1 1 1 1 1 1 1 1 NA 

Vol.thres.value 80 80 80 80 80 80 80 80 80 NA 

 
Figure 4. The overall annual validation output between SREPs and observed ground rainfall data from 2000-2020 over OR. 

4.3. Analyzing Spatial Temporal Rainfall 

Variability 

According to the overall evaluation, all SREPs have a good 

correlation when increasing the accumulation time series and 

using long-year station data, So, in this study, MSWEP was 

chosen to assess the spatio- temporal variability and trend of 

rainfall over ORB for the period of 1990–2017. 

4.3.1. Rainfall Distribution 

As displayed in figure 5, the overall outcome demonstrates 

the annual mean rainfall distribution over the entire basin, 

showing a range of 200–2000 mm. The greater rainfall distri-

bution occurred in the western, central, and some parts of the 

north and southwest of the basin, and most probably the 

southern and northern parts of the basin have a lower the rain-

fall regime in the northern and central regions of the basin is 

unimodal (March to October) and bimodal (March to May) in 

the south. to medium rainfall distribution. The seasonal rainfall 

distribution, on the other hand, shows a lower rainfall amount in 

winter and autumn and medium and strong rainfall distribution 

in spring and summer. As a result, the rainfall regime in the 
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northern and central regions of the basin is unimodal (March to October) and bimodal (March to May) in the south. 

 
Figure 5. Annual and Seasonal spatial average rainfall distribution over ORB from 1990-2017. 

4.3.2. Spatiotemporal Rainfall Variability over ORB 

(CV, SRA, and MK Trend Analysis) 

According to Figure 6, the seasonal, and annual CV results, 

the basin is expressed as having low to high rainfall variation 

in the northern, central, western, and southern parts of basin. 

The basin experiences high to low variability the northern, 

central, western, and southern parts of the basin. The basin 

experiences high to low variability during the winter season, 

followed by autumn, spring, and summer, and low to medium 

variability annual. 

4.3.3. Standardized Rainfall Anomaly Index (SRAI) 

The inter-annual and seasonal rainfall variability over the 

observed time series was implied by the computation of the 

standard rainfall anomalies, which revealed both positive and 

negative anomalies. According to Figure 8, the overall in-

ter-annual SRAI from 1990 to 2017 evaluation shows a strong 

positive and negative rainfall anomaly in 1997, 2006, 2015, 

and 1999, 2012, 2016, respectively, when compared to the 

remaining years. According to these results, the inter-annual 

rainfall variability in the Omo River basin is teleconnection to 

the ENSO index, and high rainfall in the basin is likely to 

occur during La Nia years and dry years during El Nio years. 

The highest positive SRAI was observed in 1997 and 2006, 

which exhibit very extreme wetness (> 2.5). This output, also 

endorsed by [32, 33] claimed that some of the devastating 

floods that occurred in August 2006 and killed 364 people and 

displaced over 15,000 people in 14 villages were caused by 

climate change and variability. While the highest negative 

SRAI was found in 1999 (> 2), which is extremely dry, it 

flowed into 2012 and 2016, which are pronounced moderately 

dry over the entire basin. Similar results were reported by [34, 

35]. According to recent literature, Ethiopia has experienced 

twelve extreme historical droughts that have had an impact on 

the nation's economic growth [36, 26]. The occurrence of 

ENSO, which has had an impact on the lives of hun-dreds of 

thousands of indigenous people who rely on these waters for 

their pastoral, agro pastoral, and fishing activities, would 

destroy both river flow volume and lake level [32, 37]. 
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Figure 6. Spatiotemporal annual and seasonal of CV in ORB (1990-2017). 

4.4. Trend Analysis 

MK and Sen’s Slope 

The statistical results of the MK trend test and Sen’s slope 

estimators for annual rainfall are given in Figure 7, the statis-

tical monotonic upward positive trend observed in the south-

ern, some of central, and northwestern parts of the basin. A 

monotonic downward negative trend was observed in the 

northern, some of the western and eastern parts of the basin 

this result was also supported by [38] stated at a mean annual 

time scale, rainfall in the Upper Omo-Gibe River showed 

statistically declining trends, although seasonal rainfall 

showed inconsistent results in both directions. However, the 

mean annual rainfall trend, rainfall is generally homogenous 

and decreasing but it was the insignificant rate in northern, 

western central, and some of the southern and southwest tip 

parts of the basin and significant in some of northeast and 

southern parts of the entire basin. This result agreed with [38, 

39] in southern Ethiopia and in north-central Ethiopia. Their 

finding showed that decreasing RF pattern since about 1981. 
 

Figure 7. The overall annual MK tend analysis over ORB from 

1990-2017. 
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Figure 8. Annual SRAI over ORB from (1990-2017). 

http://www.sciencepg.com/journal/hyd


Hydrology http://www.sciencepg.com/journal/hyd 

 

49 

 

5. Conclusion 

The overall statistical, categorical, and volumetric validation 

index results show that (daily, decadal, monthly, seasonal, 

and annual) MSWEP, CHRIPS, 3B42, and TAMSAT scored 

a good performance detecting capability compared to the 

remaining products (ARC, RFE, PER CDR, PER DNRT, and 

CMORPH). According to the overall evaluation, all SREPs 

have a good correlation when increasing the accumulation 

time series and using long-year station data, but a higher 

RMSE is observed. MSWEP, CMORPH, PERCDR RFE, and 

ARC have better aggregation with a slight underestimation 

of gauge rainfall products, whereas 3B42, CHRIPS, TAM-

SAT, and PER DNRT have an overestimation of rain gauge 

data. Furthermore, having a high spatiotemporal resolution, 

utilizing multiple algorithms calibrated with station data, and 

integrating diverse data sources is assisting more SREPs in 

developing their accuracy and selecting them for various 

applications. So, in this study, MSWEP was chosen to assess 

the spatio-temporal variability and trend of rainfall over 

ORB for the period of 1990–2017. The overall outcome 

demonstrates the annual mean rainfall distribution over the 

entire basin, showing a range of 200–2000 mm. The seasonal 

rainfall distribution, on the other hand, shows a lower rainfall 

amount in winter and autumn and medium and strong rainfall 

distribution in spring and summer. As a result, the rainfall 

regime in the northern and central regions of the basin is 

unimodal (March to October) and bimodal (March to May) 

in the south. According to monthly, seasonal, and annual CV 

results, the basin is expressed as having low to high rainfall 

variation in the northern, central, western, and southern parts 

of the basin. The basin experiences high to low variability 

during the winter season, followed by autumn, spring, and 

summer, and low to medium variability annually. In addition, 

the entire basin had a significant positive and negative 

rainfall anomalies index. Occasionally, these anomalies 

cause major floods and droughts that undoubtedly have an 

impact on the basin and its resources. The basin has an in-

creasing trend from the south to the north, as shown by the 

annual average MK trend, and a decreasing trend in the north 

and the northern tip of the basin. A non- significantly de-

creasing trend was observed in the most of the entire basin in 

all seasons. As recommendation, overall, the Omo river 

basin is that have an area of arid and semi-arid regions, dis-

tinguished by their infrequent rainfall. Rainfall varies greatly 

in terms of intensity and geographic and temporal dispersion. 

Communities in the research region are either agro pastoral 

or pastoral and the very sensitive effects of climate change 

on these industries Drought is one of the climate extremes 

that commonly occur in this area and has a big impact on 

these populations. Extreme rainfall in this area has a number 

of negative repercussions, including a lack of surface and 

ground water, crop losses, and a lack of cattle feed. Com-

munities and local actors must therefore develop suitable 

adaptation methods that will increase their abilities during 

and after a disaster and help them to withstand its negative 

impacts. The decision-makers must exercise good judgment. 
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